On A Day At The Races – student

Most recently the Baron challenged Sir R----- to a race of knights around the perimeter of a chessboard, with the Baron starting upon the lower right hand square and Sir R----- upon the lower left. The chase proceeded anticlockwise with the Baron moving four squares at each turn and Sir R----- by the roll of a die. Costing Sir R----- one cent to play, his goal was to catch or overtake the Baron before he reached the first rank for which he would receive a prize of forty one cents for each square that the Baron still had to traverse before reaching it.

Finally On A Clockwork Contagion – student

Over the course of the year my fellow students and I have spent our free time building mathematical models of the spread of disease, initially assuming that upon contracting the infection a person would immediately and forever be infectious, then adding periods of incubation and recovery before finally introducing the concept of location whereby the proximate are significantly more likely to interact than the distant and examining the consequences for a population distributed between several disparate villages.
Whilst it is most certainly the case that this was more reasonable than assuming entirely random encounters it failed to take into account the fact that folk should have a much greater proclivity to meet with their friends, family and colleagues than with their neighbours and it is upon this deficiency that we have concentrated our most recent efforts.

On Triumvirate – student

When last they met, the Baron invited Sir R----- to join him in a wager involving a sequence of coin tosses. At a cost of seven coins Sir R----- would receive one coin for every toss of the coin until a run of three heads or of three tails brought the game to its conclusion.

To evaluate its worth to Sir R----- we begin with his expected winnings after a single toss of the coin.

Further Still On A Clockwork Contagion – student

My fellow students and I have spent the past several months attempting to build a mathematical model of the spread of disease, our interest in the subject having been piqued whilst we were confined to our halls of residence during the epidemic that beset us upon the dawn of the year. Having commenced with the assumption that those who became infected would be infectious immediately and in perpetuity we refined our model by adding a non-infectious period of incubation and a finite period of illness, after which sufferers should recover with consequent immunity and absence of infectiousness.
A fundamental weakness in our model that we have lately sought to address is the presumption that individuals might initiate contact with other members of the population entirely by chance when it is far more likely that they should interact with those in their immediate vicinity. It is upon our first attempt at correcting this deficiency that I should now like to report.

Further On A Clockwork Contagion – student

When last we spoke, I told you of my fellow students' and my first attempt at employing Professor B------'s wondrous computational engine to investigate the statistical properties of the spread of disease; a subject that we had become most curious about whilst confined to our quarters during the epidemic earlier this year. You will no doubt recall that our model assumed that once someone became infected their infectiousness would persist indefinitely, which is quite contrary to the nature of the outbreak. We have since added incubation, recovery and immunity and it is upon these refinements that I shall now report.

On Twenty-Niner – student

The Baron's most recent wager set Sir R----- the task of placing tokens upon spaces numbered from zero to nine according to the outcome of a twenty sided die upon which was inscribed two of each of those numbers. At a cost of one coin per roll of the die, Sir R-----'s goal was to place a token upon every space for which he should receive twenty nine coins and twenty nine cents from the Baron.

On A Clockwork Contagion – student

During the recent epidemic, my fellow students and I had plenty of time upon our hands due to the closure of the taverns, theatres and gambling houses at which we would typically while away our evenings and the Dean's subsequent edict restricting us to halls. We naturally set to thinking upon the nature of the disease's transmission and, once the Dean relaxed our confinement, we returned to our college determined to employ Professor B------'s incredible mathematical machine to investigate the probabilistic nature of contagion.

On Tug O’ War – student

The Baron and Sir R-----'s latest wager comprised of first placing a draught piece upon the fifth lowest of a column of twelve squares and subsequently moving it up or down by one space depending upon the outcome of a coin toss until such time as it should escape, either by moving above the topmost or below the bottommost square. In the former outcome the Baron should have had a prize of three coins and in the latter Sir R----- should have had two.

Finally On A Very Cellular Process – student

Over the course of the year my fellow students and I have been utilising our free time to explore the behaviour of cellular automata, which are mechanistic processes that crudely approximate the lives and deaths of unicellular creatures such as amoebas. Specifically, they are comprised of unending lines of boxes, some of which contain cells that are destined to live, dive and reproduce according to the occupancy of their neighbours.
Most recently we have seen how we can categorise automata by the manner in which their populations evolve from a primordial state of each box having equal chances of containing or not containing a cell, be they uniform, constant, cyclical, migratory, random or strange. It is the latter of these, which contain arrangements of cells that interact with each other in complicated fashions, that has lately consumed our attention and I shall now report upon our findings.

Further Still On A Very Cellular Process – student

My fellow students and I have lately been spending our spare time experimenting with cellular automata, which are simple mathematical models of single celled creatures such as amoebas, governing their survival and reproduction from one generation to the next according to the population of their neighbourhoods. In particular, we have been considering an infinite line of boxes, some of which contain living cells, together with rules that specify whether or not a box will be populated in the next generation according to its, its left hand neighbour's and its right hand neighbour's contents in the current generation.
We have found that for many such automata we can figure the contents of the boxes in any generation that evolved from a single cell directly, in a few cases from the oddness or evenness of elements in the rows of Pascal's triangle and the related trinomial triangle, and in several others from the digits in terms of sequences of binary fractions.
We have since turned our attention to the evolution of generations from multiple cells rather then one; specifically, from an initial generation in which each box has an even chance of containing a cell or not.

On May The Fours Be With You – student

In their most recent wager Sir R-----'s goal was to guess the outcome of the Baron's roll of four four sided dice at a cost of four coins and a prize, if successful, of forty four. On the face of it this seems a rather meagre prize since there are two hundred and fifty six possible outcomes of the Baron's throw. Crucially, however, the fact that the order of the matching dice was not a matter of consequence meant that Sir R-----'s chances were significantly improved.

Further On A Very Cellular Process – student

You will no doubt recall my telling you of my fellow students' and my latest pastime of employing Professor B------'s Experimental Clockwork Mathematical Apparatus to explore the behaviours of cellular automata, which may be thought of as simplistic mathematical simulacra of animalcules such as amoebas.
Specifically, if we put together an infinite line of imaginary boxes, some of which are empty and some of which contain living cells, then we can define a set of rules to determine whether or not a box will contain a cell in the next generation depending upon its own, its left and its right neighbours contents in the current one.

On Fruitful Opals – student

Recall that the Baron’s game consisted of guessing under which of a pair of cups was to be found a token for a stake of four cents and a prize, if correct, of one. Upon success, Sir R----- could have elected to play again with three cups for the same stake and double the prize. Success at this and subsequent rounds gave him the opportunity to play another round for the same stake again with one more cup than the previous round and a prize equal to that of the previous round multiplied by its number of cups.

On A Very Cellular Process – student

Recently my fellow students and I have been spending our free time using Professor B------'s remarkable calculating engine to experiment with cellular automata, being mathematical contrivances that might be thought of as crude models of the lives of those most humble of creatures; amoebas. In their simplest form they are unending lines of boxes, some of which contain a living cell that at each generation will live, die or reproduce according to the contents of its neighbouring boxes. For example, we might say that each cell divides and its two offspring migrate to the left and right, dying if they encounter another cell's progeny.

On Two By Two – student

The Baron's most recent wager with Sir R----- set him the challenge of being the last to remove a horizontally, vertically or diagonally adjacent pair of draughts from a five by five square of them, with the Baron first taking a single draught and Sir R----- and he thereafter taking turns to remove such pairs.

When I heard these rules I was reminded of the game of Cram and could see that, just like it, the key to figuring the outcome is to recognise that the Baron could always have kept the remaining draughts in a state of symmetry, thereby ensuring that however Sir R----- had chosen he shall subsequently have been free to make a symmetrically opposing choice.

Finally On An Ethereal Orrery – student

Over the course of the year, my fellow students and I have been experimenting with an ethereal orrery which models the motion of heavenly bodies using nought but Sir N-----'s laws of gravitation and motion. Whilst the consequences of those laws are not generally subject to solution by mathematical reckoning, we were able to approximate them with a scheme that admitted errors of the order of the sixth power of the steps in time by which we advanced the positions of those bodies.
We have thus far employed it to model the solar system itself, uniformly distributed bodies of matter and the accretion of bodies that are close to Earth's orbit about the Sun. Whilst we were most satisfied by its behaviour, I should now like to report upon an altogether more surprising consequence of its engine's action.

On The Octogram Of Seth LaPod – student

The latest wager that the Baron put to Sir R----- had them competing to first chalk a triangle between three of eight coins, with Sir R----- having the prize if neither of them managed to do so. I immediately recognised this as the game known as Clique and consequently that Sir R-----'s chances could be reckoned by applying the pigeonhole principle and the tactic of strategy stealing. Indeed, I said as much to the Baron but I got the distinct impression that he wasn't really listening.

Further Still On An Ethereal Orrery – student

Recently, my fellow students and I constructed a mathematical orrery which modelled the motion of heavenly bodies employing Sir N-----'s laws of gravitation and motion, rather than clockwork, as its engine. Those laws state that bodies are attracted toward each other with a force proportional to the product of their masses divided by the square of the distance between them, that a body will remain at rest or in constant motion unless a force acts upon it, that if a force acts upon it then it will be accelerated in the direction of that force at a rate proportional to its strength divided by its mass and that, if so, it will reciprocate with an opposing force of equal strength.
Its operation was most satisfactory, which set us to wondering whether we might use its engine to investigate the motions of entirely hypothetical arrangements of heavenly bodies and I should now like to report upon our progress in doing so.

On The Hydra Of Argos – student

When the Baron last met with Sir R-----, he proposed a wager which commenced with the placing of twenty black tokens and fifteen white tokens in a bag. At each turn Sir R----- was to draw a token from the bag and then put it and another of the same colour back inside until there were thirty tokens of the same colour in the bag, with the Baron winning a coin from Sir R----- if there were thirty black and Sir R----- winning ten coins from the Baron if there were thirty white.
Upon hearing these rules I recognised that they described the classic probability problem known as Pólya's Urn. I explained to the Baron that it admits a relatively simple expression that governs the likelihood that the bag contains given numbers of black and white tokens at each turn which could be used to figure the probability that he should have triumphed, but I fear that he didn't entirely grasp my point.

Further On An Ethereal Orrery – student

Last time we met we spoke of my fellow students' and my interest in constructing a model of the motion of heavenly bodies using mathematical formulae in the place of brass. In particular we have sought to do so from first principals using Sir N-----'s law of universal gravitation, which states that the force attracting two bodies is proportional to the product of their masses divided by the square of the distance between them, and his laws of motion, which state that a body will remain at rest or in constant motion unless a force acts upon it, that it will be accelerated in the direction of that force at a rate proportional to its magnitude divided the body's mass and that a force acting upon it will be met with an equal force in the opposite direction.
Whilst Sir N----- showed that a pair of bodies traversed conic sections under gravity, being those curves that arise from the intersection of planes with cones, the general case of several bodies has proved utterly resistant to mathematical reckoning. We must therefore approximate the equations of motion and I shall now report on our first attempt at doing so.

On Pennies From Heaven – student

Recall that the Baron and Sir R-----'s most recent wager first had the Baron place three coins upon the table, choosing either heads or tails for each in turn, after which Sir R----- would follow suit. They then set to tossing coins until a run of three matched the Baron's or Sir R-----'s coins from left to right, with the Baron having three coins from Sir R----- if his made a match and Sir R----- having two from the Baron if his did.

When the Baron described the manner of play to me I immediately pointed out to him that it was Penney-Ante, which I recognised because one of my fellow students had recently employed it to enjoy a night at the tavern entirely at the expense of the rest of us! He was able to do so because it's an example of an intransitive wager in which the second player can always contrive to make a choice that will best the first player's.

On An Ethereal Orrery – student

My fellow students and I have lately been wondering whether we might be able to employ Professor B------'s Experimental Clockwork Mathematical Apparatus to fashion an ethereal orrery, making a model of the heavenly bodies with equations rather than brass.
In particular we have been curious as to whether we might construct such a model using nought but Sir N-----'s law of universal gravitation, which posits that those bodies are attracted to one another with a force that is proportional to the product of their masses divided by the square of the distance between them, and laws of motion, which posit that a body will remain at rest or move with constant velocity if no force acts upon it, that if a force acts upon it then it will be accelerated at a rate proportional to that force divided by its mass in the direction of that force and that it in return exerts a force of equal strength in the opposite direction.

On Onwards And Downwards – student

When last they met, the Baron challenged Sir R----- to evade capture whilst moving rooks across and down a chessboard. Beginning with a single rook upon the first file and last rank, the Baron should have advanced it to the second file and thence downwards in rank in response to which Sir R----- should have progressed a rook from beneath the board by as many squares and if by doing so had taken the Baron's would have won the game. If not, Sir R----- could then have chosen either rook, barring one that sits upon the first rank, to move to the next file in the same manner with the Baron responding likewise. With the game continuing in this fashion and ending if either of them were to take a rook moved by the other or if every file had been played upon, the Baron should have had a coin from Sir R----- if he took a piece and Sir R----- one of the Baron's otherwise.

Finally On Natural Analogarithms – student

Over the course of the year my fellow students and I have spent much of our spare time investigating the properties of the set of infinite dimensional vectors associated with the roots of rational numbers by way of the former's elements being the powers to which the latter's prime factors are raised, which we have dubbed -space.
We proceeded to define functions of such numbers by applying operations of linear algebra to their -space vectors; firstly with their magnitudes and secondly with their inner products. This time, I shall report upon our explorations of the last operation that we have taken into consideration; the products of matrices and vectors.

On The Rich Get Richer – student

The Baron's latest wager set Sir R----- the task of surpassing his score before he reached eight points as they each cast an eight sided die, each adding one point to their score should the roll of their die be less than or equal to it. The cost to play for Sir R------ was one coin and he should have had a prize of five coins had he succeeded.

A key observation when figuring the fairness of this wager is that if both Sir R----- and the Baron cast greater than their present score then the state of play remains unchanged. We may therefore ignore such outcomes, provided that we adjust the probabilities of those that we have not to reflect the fact that we have done so.

Further Still On Natural Analogarithms – student

For several months now my fellow students and I have been exploring -space, being the set of infinite dimensional vectors whose elements are the powers of the prime factors of the roots of rational numbers, which we chanced upon whilst attempting to define a rational valued logarithmic function for such numbers.
We have seen how we might define functions of roots of rationals employing the magnitude of their associated -space vectors and that the iterative computation of such functions may yield cyclical sequences, although we conspicuously failed to figure a tidy mathematical rule governing their lengths.
The magnitude is not the only operation of linear algebra that we might bring to bear upon such roots, however, and we have lately busied ourselves investigating another.

On Blockade – student

Recall that the Baron's game is comprised of taking turns to place dominoes on a six by six grid of squares with each domino covering a pair of squares. At no turn was a player allowed to place a domino such that it created an oddly-numbered region of empty squares and Sir R----- was to be victorious if, at the end of play, the lines running between the ranks and files of the board were each and every one straddled by at least one domino.

Further On Natural Analogarithms – student

My fellow students and I have of late been thinking upon an equivalence between the roots of rational numbers and an infinite dimensional rational vector space, which we have named -space, that we discovered whilst defining analogues of logarithms that were expressed purely in terms of rationals.
We were particularly intrigued by the possibility of defining functions of such numbers by applying linear algebra operations to their associated vectors, which we began with a brief consideration of that given by their magnitudes. We have subsequently spent some time further exploring its properties and it is upon our findings that I shall now report.

On Quaker’s Dozen – student

The Baron's latest wager set Sir R----- the task of rolling a higher score with two dice than the Baron should with one twelve sided die, giving him a prize of the difference between them should he have done so. Sir R-----'s first roll of the dice would cost him two coins and twelve cents and he could elect to roll them again as many times as he desired for a further cost of one coin and twelve cents each time, after which the Baron would roll his.
The simplest way to reckon the fairness of this wager is to re-frame its terms; to wit, that Sir R----- should pay the Baron one coin to play and thereafter one coin and twelve cents for each roll of his dice, including the first. The consequence of this is that before each roll of the dice Sir R----- could have expected to receive the same bounty, provided that he wrote off any losses that he had made beforehand.

On Natural Analogarithms – student

Last year my fellow students and I spent a goodly portion of our free time considering the similarities of the relationships between sequences and series and those between derivatives and integrals. During the course of our investigations we deduced a sequence form of the exponential function ex, which stands alone in satisfying the equations

    D f = f
  f(0) = 1

where D is the differential operator, producing the derivative of the function to which it is applied.
This set us to wondering whether or not we might endeavour to find a discrete analogue of its inverse, the natural logarithm ln x, albeit in the sense of being expressed in terms of integers rather than being defined by equations involving sequences and series.

On Lucky Sevens – student

The Baron's most recent game consisted of a race to complete a trick of four sevens, with the Baron dealing cards from a pristine deck, running from Ace to King once in each suit, and Sir R----- dealing from a well shuffled deck. As soon as either player held such a trick the game concluded and a prize was taken, eleven coins for the Baron if he should have four sevens and nine for Sir R----- otherwise.
The key to reckoning the equity of the wager is to note that it is unchanged should the Baron and Sir R----- take turns dealing out the rest of their cards one by one after the prize has been taken.

Finally On A Calculus Of Differences – student

My fellow students and I have spent much of our spare time this past year investigating the similarities between the calculus of functions and that of sequences, which we have defined for a sequence sn with the differential operator

  Δ sn = sn - sn-1

and the integral operator
  n
  Δ-1 sn = Σ si
  i = 1
where Σ is the summation sign, adopting the convention that terms with non-positive indices equate to zero.

We have thus far discovered how to differentiate and integrate monomial sequences, found product and quotient rules for differentiation, a rule of integration by parts and figured solutions to some familiar-looking differential equations, all of which bear a striking resemblance to their counterparts for functions. To conclude our investigation, we decided to try to find an analogue of Taylor's theorem for sequences.

On Share And Share Alike – student

When last they met, the Baron challenged Sir R----- to a wager in which, for a price of three coins and fifty cents, he would make a pile of two coins upon the table. Sir R----- was then to cast a four sided die and the Baron would add to that pile coins numbering that upon which it settled. The Baron would then make of it as many piles of equal numbers of no fewer than two coins as he could muster and take back all but one of them for his purse. After doing so some sixteen times, Sir R----- was to have as his prize the remaining pile of coins.

Further Still On A Calculus Of Differences – student

For some time now my fellow students and I have been whiling away our spare time considering the similarities of the relationships between sequences and series and those between the derivatives and integrals of functions. Having defined differential and integral operators for a sequence sn with

  Δ sn = sn - sn-1

and
  n
  Δ-1 sn = Σ si
  i = 1
where Σ is the summation sign, we found analogues for the product rule, the quotient rule and the rule of integration by parts, as well as formulae for the derivatives and integrals of monomial sequences, being those whose terms are non-negative integer powers of their indices, and higher order, or repeated, derivatives and integrals in general.

We have since spent some time considering how we might solve equations relating sequences to their derivatives, known as differential equations when involving functions, and it is upon our findings that I shall now report.

On Divisions – student

The Baron's game most recent game consisted of a series of some six wagers upon the toss of an unfair coin that turned up one side nine times out of twenty and the other eleven times out of twenty at a cost of one fifth part of a coin. Sir R----- was to wager three coins from his purse upon the outcome of each toss, freely divided between heads and tails, and was to return to it twice the value he wagered correctly.

Clearly, our first task in reckoning the fairness of this game is to figure Sir R-----'s optimal strategy for placing his coins. To do this we shall need to know his expected winnings in any given round for any given placement of his coins.

On Divisions – student

The Baron's game most recent game consisted of a series of some six wagers upon the toss of an unfair coin that turned up one side nine times out of twenty and the other eleven times out of twenty at a cost of one fifth part of a coin. Sir R----- was to wager three coins from his purse upon the outcome of each toss, freely divided between heads and tails, and was to return to it twice the value he wagered correctly.

Clearly, our first task in reckoning the fairness of this game is to figure Sir R-----'s optimal strategy for placing his coins. To do this we shall need to know his expected winnings in any given round for any given placement of his coins.

Further On A Calculus Of Differences – student

As I have previously reported, my fellow students and I have found our curiosity drawn to the calculus of sequences, in which we define analogues of the derivatives and integrals of functions for a sequence sn with the operators

  Δ sn = sn - sn-1

and
  n
  Δ-1 sn = Σ si
  i = 1
respectively, where Σ is the summation sign, for which we interpret all non-positively indexed elements as zero.

I have already spoken of the many and several fascinating similarities that we have found between the derivatives of sequences and those of functions and shall now describe those of their integrals, upon which we have spent quite some mental effort these last few months.

Further On A Calculus Of Differences – student

As I have previously reported, my fellow students and I have found our curiosity drawn to the calculus of sequences, in which we define analogues of the derivatives and integrals of functions for a sequence sn with the operators

  Δ sn = sn - sn-1

and
  n
  Δ-1 sn = Σ si
  i = 1
respectively, where Σ is the summation sign, for which we interpret all non-positively indexed elements as zero.

I have already spoken of the many and several fascinating similarities that we have found between the derivatives of sequences and those of functions and shall now describe those of their integrals, upon which we have spent quite some mental effort these last few months.

On Turnabout Is Fair Play – student

Last time they met, the Baron challenged Sir R----- to turn a square of twenty five coins, all but one of which the Baron had placed heads up, to tails by flipping vertically or horizontally adjacent pairs of heads.
As I explained to the Baron, although I'm not at all sure that he was following me, this is essentially the mutilated chess board puzzle and can be solved by exactly the same argument. Specifically, we need simply imagine that the game were played upon a five by five checker board...

On Turnabout Is Fair Play – student

Last time they met, the Baron challenged Sir R----- to turn a square of twenty five coins, all but one of which the Baron had placed heads up, to tails by flipping vertically or horizontally adjacent pairs of heads.
As I explained to the Baron, although I'm not at all sure that he was following me, this is essentially the mutilated chess board puzzle and can be solved by exactly the same argument. Specifically, we need simply imagine that the game were played upon a five by five checker board...

On A Calculus Of Differences – student

The interest of my fellow students and I has been somewhat piqued of late by a curious similarity of the relationship between sequences and series to that between the derivatives and integrals of functions. Specifically, for a function f taking a non-negative argument x, we have
  x
  F(x) = f(x) dx
  0
  f(x) = d F(x)
  dx

and for a sequence s having terms

  s1, s2, s3, ...

we can define a series S with terms
  n
  Sn = s1 + s2 + s3 + ... + sn = Σ si
  i = 1
where Σ is the summation sign, from which we can recover the terms of the sequence with

  sn = Sn - Sn-1

using the convention that S0 equals zero.
This similarity rather set us to wondering whether we could employ the language of calculus to reason about sequences and series.

On A Calculus Of Differences – student

The interest of my fellow students and I has been somewhat piqued of late by a curious similarity of the relationship between sequences and series to that between the derivatives and integrals of functions. Specifically, for a function f taking a non-negative argument x, we have
  x
  F(x) = f(x) dx
  0
  f(x) = d F(x)
  dx

and for a sequence s having terms

  s1, s2, s3, ...

we can define a series S with terms
  n
  Sn = s1 + s2 + s3 + ... + sn = Σ si
  i = 1
where Σ is the summation sign, from which we can recover the terms of the sequence with

  sn = Sn - Sn-1

using the convention that S0 equals zero.
This similarity rather set us to wondering whether we could employ the language of calculus to reason about sequences and series.